skip to main content


Search for: All records

Creators/Authors contains: "Joshi, Darshan G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction.

     
    more » « less
  3. We investigate a model of electrons with random and all-to-all hopping and spin exchange interactions, with a constraint of no double occupancy. The model is studied in a Sachdev–Ye–Kitaev-like large-Mlimit with SU(M) spin symmetry. The saddle-point equations of this model are similar to approximate dynamic mean-field equations of realistic, nonrandom,t-Jmodels. We use numerical studies on both real and imaginary frequency axes, along with asymptotic analyses, to establish the existence of a critical non–Fermi-liquid metallic ground state at large doping, with the spin correlation exponent varying with doping. This critical solution possesses a time-reparameterization symmetry, akin to Sachdev–Ye–Kitaev (SYK) models, which contributes a linear-in-temperature resistivity over the full range of doping where the solution is present. It is therefore an attractive mean-field description of the overdoped region of cuprates, where experiments have observed a linear-Tresistivity in a broad region. The critical metal also displays a strong particle–hole asymmetry, which is relevant to Seebeck coefficient measurements. We show that the critical metal has an instability to a low-doping spin-glass phase and compute a critical doping value. We also describe the properties of this metallic spin-glass phase.

     
    more » « less
  4. null (Ed.)